Origins of enhanced proton transport in the Y7F mutant of human carbonic anhydrase II.
نویسندگان
چکیده
Human carbonic anhydrase II (HCA II), among the fastest enzymes known, catalyzes the reversible hydration of CO 2 to HCO 3 (-). The rate-limiting step of this reaction is believed to be the formation of an intramolecular water wire and transfer of a proton across the active site cavity from a zinc-bound solvent to a proton shuttling residue (His64). X-ray crystallographic studies have shown this intramolecular water wire to be directly stabilized through hydrogen bonds via a small well-defined set of amino acids, namely, Tyr7, Asn62, Asn67, Thr199, and Thr200. Furthermore, X-ray crystallographic and kinetic studies have shown that the mutation of tyrosine 7 to phenylalanine, Y7F HCA II, has the effect of increasing the proton transfer rate by 7-fold in the dehydration direction of the enzyme reaction compared to wild-type (WT). This increase in the proton transfer rate is postulated to be linked to the formation of a more directional, less branched, water wire. To evaluate this proposal, molecular dynamics simulations have been employed to study water wire formation in both the WT and Y7F HCA II mutant. These studies reveal that the Y7F mutant enhances the probability of forming small water wires and significantly extends the water wire lifetime, which may account for the elevated proton transfer seen in the Y7F mutant. Correlation analysis of the enzyme and intramolecular water wire indicates that the Y7F mutant significantly alters the interaction of the active site waters with the enzyme while occupancy data of the water oxygens reveals that the Y7F mutant stabilizes the intramolecular water wire in a manner that maximizes smaller water wire formation. This increase in the number of smaller water wires is likely to elevate the catalytic turnover of an already very efficient enzyme.
منابع مشابه
Speeding up proton transfer in a fast enzyme: kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II.
Catalysis of the hydration of CO2 by human carbonic anhydrase isozyme II (HCA II) is sustained at a maximal catalytic turnover of 1 mus-1 by proton transfer between a zinc-bound solvent and bulk solution. This mechanism of proton transfer is facilitated via the side chain of His64, which is located 7.5 A from the zinc, and mediated via intervening water molecules in the active-site cavity. Thre...
متن کاملTransport Activity of the Sodium Bicarbonate Cotransporter NBCe1 Is Enhanced by Different Isoforms of Carbonic Anhydrase
Transport metabolons have been discussed between carbonic anhydrase II (CAII) and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1), to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes ...
متن کاملStudy of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods
Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...
متن کاملProton transfer from exogenous donors in catalysis by human carbonic anhydrase II.
In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5...
متن کاملEffect of long-term oral administration of extra thyroxine on oviductal expression of carbonic anhydrase and avidin-related protein-2 genes in broiler breeder hens
Avian sperm are stored in the sperm storage tubules (SSTs) of the hen oviduct for a prolonged period. The impact of avidin-related protein-2 (AVRP2) and carbonic anhydrase II (CA II) in sperm viability in the SSTs has been suggested. The aim of the present study was to investigate the effect of oral administration of a high dose of thyroxine on the oviductal expression of AVRP2<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 34 شماره
صفحات -
تاریخ انتشار 2008